業務内容
グループ研究開発本部は、GMOインターネットグループの事業領域で力を入れているスタートアップやグループ横断のプロジェクトにおいて、技術支援・開発・解析などを行い、ビジネスの成功を支援する部署です。
その中にAI研究開発室があり、データ解析やAIに関する支援を行っています。また、最新のテクノロジーを常に研究開発し、いち早くビジネスに投入し結果に繋げます。
東京大学医科学研究所様との老化細胞の共同研究のプロジェクトに参加していただきます。
バイオインフォマティクス(ドライ解析)でホットなシングルセル解析の分野において、今もっとも注目されている研究の1つである「老化細胞」の最先端の研究
最新の生成AIの基盤モデル(Foundation Model)や様々な機械学習を応用し、且つデータやAIモデルの本質を深く掘り下げて、老化細胞の遺伝子に関するメカニズムを解き明かす研究
プレスリリース:
https://www.gmo.jp/ir_news/article/732/
https://www.gmo.jp/news/article/8598/
また、AI研究開発室ではビジネスの様々なプロジェクトも行っており、共同研究をやりながらもしくはその後に他のプロジェクトに参加して、実績に応じて希望のキャリアを積むことが可能です。
◆フィンテック(Fintech)のプロジェクト
GMOインターネットグループが展開する金融サービスの本質を理解し、数理モデルや機械学習などのデータサイエンス技術を駆使しながら、予測が難しい金融データをうまく扱って収益を改善させます。
◆アドテク(Adtech)のプロジェクト
インターネット広告の主な仕組みの一つであるRTB(リアルタイム入札)において、広告出稿する側の費用対効果を最適化するDSP(Demand-Side Platform)の機械学習モデルの設計開発、効果測定などをメインに行います。
◆アプリのプロジェクト
フリーWiFi接続を容易にするアプリの新機能や施策の効果測定を因果推論の技術を駆使して行い、データドリブンに経営判断するための仕組みを整えて、サービスのKPIを改善させます。
◆その他のプロジェクト
暗号資産取引、不正検知などに関して、データ解析や機械学習の技術を応用して支援します。
【研究開発業務】
・プロジェクト業務を行いながら、一定の時間、全員で最先端の機械学習手法や新たな機械学習の応用を研究します。
・さらに四半期ごとに選任されたメンバーは重点的に研究開発を行います。
【利用技術】
◆解析手法
シングルセルRNA解析、遺伝子発現解析
機械学習:
Transformer系(大規模言語モデル、シングルセル生成AIモデル他)、グラフニューラルネットワーク(GNN)、多層パーセプトロン(MLP)、アンサンブル学習/勾配ブースティング(Gradient Boost Tree + LR, Random Forest, ExtraTree , Ada Boost, XGBoost, LightGBM)、PCA、FP-Growth、Word2Vec、Doc2Vec、協調フィルタリング、ベイズ推定、HMMモデル(隠れマルコフモデル)
統計分析:
t検定、カイ二乗検定、F検定、二項検定、コルモゴロフ・スミルノフ検定、シャピロウィルク検定、サンプリング(MCMC,ブートストラップ法など)、分散分析、因果推論(差分の差分法など)
◆開発技術/環境
プログラミング/フレームワーク
R、Python、PyData(numpy、scipy、pandasなど)、Streamlit
PyTorch、TensorFlow、LangChain、Spark(PySpark)
クラウド/オンプレ(ミドルウェア)
SHIROKANE
GPUワークステーション
Google Cloud(GCS、BigQuery、VertexAI、Dataflowなど)
AWS(S3、Athena、EMR/Serverless、StepFunction、SageMaker、Bedrockなど)
MySQL、MariaDB、Percona Server、PostgreSQL、Galera Cluster、Oracle、Hive、Hadoop/HDFS
ConoHa(GPUサーバー)
大規模言語モデル(LLM)関連
OpenAI API、Llama3、LangChain、HuggingFace